
UNIT-IV 

Memory Hierarchy Design and its Characteristics 

In the Computer System Design, Memory Hierarchy is an enhancement to organize 
the memory such that it can minimize the access time. The Memory Hierarchy was 
developed based on a program behavior known as locality of references.The figure 
below clearly demonstrates the different levels of memory hierarchy : 

 
This Memory Hierarchy Design is divided into 2 main types: 

1. External Memory or Secondary Memory –Comprising of Magnetic Disk, 
Optical Disk, Magnetic Tape i.e. peripheral storage devices which are accessible 
by the processor via I/O Module. 

2. Internal Memory or Primary Memory –Comprising of Main Memory, Cache 
Memory & CPU registers. This is directly accessible by the processor. 

We can infer the following characteristics of Memory Hierarchy Design from above 
figure: 

1. Capacity: 
It is the global volume of information the memory can store. As we move from 
top to bottom in the Hierarchy, the capacity increases. 

2. Access Time: 
It is the time interval between the read/write request and the availability of the 
data. As we move from top to bottom in the Hierarchy, the access time 
increases. 

3. Performance: 
Earlier when the computer system was designed without Memory Hierarchy 
design, the speed gap increases between the CPU registers and Main Memory 
due to large difference in access time. This results in lower performance of the 
system and thus, enhancement was required. This enhancement was made in 
the form of Memory Hierarchy Design because of which the performance of the 
system increases. One of the most significant ways to increase system 
performance is minimizing how far down the memory hierarchy one has to go 
to manipulate data. 

4. Cost per bit: 
As we move from bottom to top in the Hierarchy, the cost per bit increases i.e. 
Internal Memory is costlier than External Memory. 



RAM and ROM architecture. 

1) Read-only memory, or ROM, is a form of data storage in computers and other 
electronic devices that cannot be easily altered or reprogrammed. RAM is referred 
to as volatile memory and is lost when the power is turned off whereas ROM in 
non-volatile and the contents are retained even after the power is switched off. 

Types of ROM: Semiconductor-Based 

Classic mask-programmed ROM chips are integrated circuits that physically 
encode the data to be stored, and thus it is impossible to change their contents 
after fabrication. Other types of non-volatile solid-state memory permit some degree 
of modification: 

• Programmable read-only memory (PROM), or one-time programmable ROM 
(OTP), can be written to or programmed via a special device called a PROM 
programmer. Typically, this device uses high voltages to permanently destroy or 
create internal links (fuses or antifuses) within the chip. Consequently, a PROM 
can only be programmed once. 

• Erasable programmable read-only memory (EPROM) can be erased by exposure 
to strong ultraviolet light (typically for 10 minutes or longer), then rewritten with a 
process that again needs higher than usual voltage applied. Repeated exposure to 
UV light will eventually wear out an EPROM, but the endurance of most EPROM 
chips exceeds 1000 cycles of erasing and reprogramming. EPROM chip packages 
can often be identified by the prominent quartz "window" which allows UV light to 
enter. After programming, the window is typically covered with a label to prevent 
accidental erasure. Some EPROM chips are factory-erased before they are 
packaged, and include no window; these are effectively PROM. 

• Electrically erasable programmable read-only memory (EEPROM) is based on 
a similar semiconductor structure to EPROM, but allows its entire contents (or 
selected banks) to be electrically erased, then rewritten electrically, so that they 
need not be removed from the computer (whether general-purpose or an embedded 
computer in a camera, MP3 player, etc.). Writing or flashing an EEPROM is much 
slower (milliseconds per bit) than reading from a ROM or writing to a RAM 
(nanoseconds in both cases). 

• Electrically alterable read-only memory (EAROM) is a type of EEPROM that 
can be modified one bit at a time. Writing is a very slow process and again needs 
higher voltage (usually around 12 V) than is used for read access. EAROMs are 
intended for applications that require infrequent and only partial rewriting. EAROM 
may be used as non-volatile storage for critical system setup information; in many 
applications, EAROM has been supplanted by CMOS RAM supplied by mains 
power and backed-up with a lithium battery. 

• Flash memory (or simply flash) is a modern type of EEPROM invented in 1984. 
Flash memory can be erased and rewritten faster than ordinary EEPROM, and 
newer designs feature very high endurance (exceeding 1,000,000 cycles). Modern 
NAND flash makes efficient use of silicon chip area, resulting in individual ICs with 
a capacity as high as 32 GB as of 2007; this feature, along with its endurance and 
physical durability, has allowed NAND flash to replace magnetic in some 
applications (such as USB flash drives). Flash memory is sometimes called flash 
ROM or flash EEPROM when used as a replacement for older ROM types, but not 
in applications that take advantage of its ability to be modified quickly and 
frequently. 

2) Random-access memory, or RAM, is a form of data storage that can be 
accessed randomly at any time, in any order and from any physical location in 
contrast to other storage devices, such as hard drives, where the physical location 



of the data determines the time taken to retrieve it. RAM is measured in megabytes 
and the speed is measured in nanoseconds and RAM chips can read data faster 
than ROM. 

Types of RAM: The two widely used forms of modern RAM are static RAM (SRAM) 
and dynamic RAM (DRAM). In SRAM, a bit of data is stored using the state of a six 
transistor memory cell. This form of RAM is more expensive to produce, but is 
generally faster and requires less dynamic power than DRAM. In modern 
computers, SRAM is often used as cache memory for the CPU. DRAM stores a bit of 
data using a transistor and capacitor pair, which together comprise a DRAM cell. 
The capacitor holds a high or low charge (1 or 0, respectively), and the transistor 
acts as a switch that lets the control circuitry on the chip read the capacitor's state 
of charge or change it. As this form of memory is less expensive to produce than 
static RAM, it is the predominant form of computer memory used in modern 
computers. The figure below shows DRAM & SRAM resp. 

 
Both static and dynamic RAM are considered volatile, as their state is lost or 

reset when power is removed from the system. By contrast, read-only memory 
(ROM) stores data by permanently enabling or disabling selected transistors, such 
that the memory cannot be altered. Writeable variants of ROM (such as EEPROM 
and flash memory) share properties of both ROM and RAM, enabling data to persist 
without power and to be updated without requiring special equipment. These 
persistent forms of semiconductor ROM include USB flash drives, memory cards 
for cameras and portable devices, and solid-state drives. ECC memory (which can 
be either SRAM or DRAM) includes special circuitry to detect and/or correct 
random faults (memory errors) in the stored data, using parity bits or error 
correction codes. 

In general, the term RAM refers solely to solid-state memory devices (either 
DRAM or SRAM), and more specifically the main memory in most computers. In 
optical storage, the term DVD-RAM is somewhat of a misnomer since, unlike CD-
RW or DVD-RW it does not need to be erased before reuse. Nevertheless, a DVD-
RAM behaves much like a hard disc drive if somewhat slower. 

Difference between Static Ram And Dynamic Ram 

 



Requirements of Memory Management System 

Memory management keeps track of the status of each memory location, whether it 
is allocated or free. It allocates the memory dynamically to the programs at their 
request and frees it for reuse when it is no longer needed. Memory management 
meant to satisfy some requirements that we should keep in mind. 

These Requirements of memory management are: 

1. Relocation – The available memory is generally shared among a number of 
processes in a multiprogramming system, so it is not possible to know in 
advance which other programs will be resident in main memory at the time of 
execution of his program. Swapping the active processes in and out of the main 
memory enables the operating system to have a larger pool of ready-to-execute 
process. 
 
When a program gets swapped out to a disk memory, then it is not always 
possible that when it is swapped back into main memory then it occupies the 
previous memory location, since the location may still be occupied by another 
process. We may need to relocate the process to a different area of memory. 
Thus there is a possibility that program may be moved in main memory due to 
swapping. 
 

 
The figure depicts a process image. The process image is occupying a 

continuous region of main memory. The operating system will need to know 
many things including the location of process control information, the 
execution stack, and the code entry. Within a program, there are memory 
references in various instructions and these are called logical addresses. 

After loading of the program into main memory, the processor and the 
operating system must be able to translate logical addresses into physical 
addresses. Branch instructions contain the address of the next instruction to 
be executed. Data reference instructions contain the address of byte or word of 
data referenced. 

2. Protection – There is always a danger when we have multiple programs at the 
same time as one program may write to the address space of another program. 
So every process must be protected against unwanted interference when other 
process tries to write in a process whether accidental or incidental. Between 
relocation and protection requirement a trade-off occurs as the satisfaction of 



relocation requirement increases the difficulty of satisfying the protection 
requirement. 

Prediction of the location of a program in main memory is not possible, 
that’s why it is impossible to check the absolute address at compile time to 
assure protection. Most of the programming language allows the dynamic 
calculation of address at run time. The memory protection requirement must 
be satisfied by the processor rather than the operating system because the 
operating system can hardly control a process when it occupies the processor. 
Thus it is possible to check the validity of memory references. 
 

3. Sharing – A protection mechanism must have to allow several processes to 
access the same portion of main memory. Allowing each processes access to 
the same copy of the program rather than have their own separate copy has an 
advantage. 

For example, multiple processes may use the same system file and it is 
natural to load one copy of the file in main memory and let it shared by those 
processes. It is the task of Memory management to allow controlled access to 
the shared areas of memory without compromising the protection. Mechanisms 
are used to support relocation supported sharing capabilities. 
 

4. Logical organization – Main memory is organized as linear or it can be a one-
dimensional address space which consists of a sequence of bytes or words. 
Most of the programs can be organized into modules, some of those are 
unmodifiable (read-only, execute only) and some of those contain data that can 
be modified. To effectively deal with a user program, the operating system and 
computer hardware must support a basic module to provide the required 
protection and sharing. It has the following advantages: 
 
• Modules are written and compiled independently and all the references 

from one module to another module are resolved by `the system at run 
time. 

• Different modules are provided with different degrees of protection. 
• There are mechanisms by which modules can be shared among processes. 

Sharing can be provided on a module level that lets the user specify the 
sharing that is desired. 
 

5. Physical organization – The structure of computer memory has two levels 
referred to as main memory and secondary memory. Main memory is relatively 
very fast and costly as compared to the secondary memory. Main memory is 
volatile. Thus secondary memory is provided for storage of data on a long-term 
basis while the main memory holds currently used programs. The major 
system concern between main memory and secondary memory is the flow of 
information and it is impractical for programmers to understand this for two 
reasons: 
 
• The programmer may engage in a practice known as overlaying when the 

main memory available for a program and its data may be insufficient. It 
allows different modules to be assigned to the same region of memory. One 
disadvantage is that it is time-consuming for the programmer. 

• In a multiprogramming environment, the programmer does not know how 
much space will be available at the time of coding and where that space 
will be located inside the memory. 

 



Cache Memory in Computer Organization 

Cache Memory is a special very high-speed memory. It is used to speed up 
and synchronizing with high-speed CPU. Cache memory is costlier than main 
memory or disk memory but economical than CPU registers. Cache memory is an 
extremely fast memory type that acts as a buffer between RAM and the CPU. It 
holds frequently requested data and instructions so that they are immediately 
available to the CPU when needed. 

Cache memory is used to reduce the average time to access data from the 
Main memory. The cache is a smaller and faster memory which stores copies of the 
data from frequently used main memory locations. There are various different 
independent caches in a CPU, which store instructions and data. 

 
Levels of memory: 
• Level 1 or Register – It is a type of memory in which data is stored and 

accepted that are immediately stored in CPU. Most commonly used register is 
accumulator, Program counter, address register etc. 

• Level 2 or Cache memory – It is the fastest memory which has faster access 
time where data is temporarily stored for faster access. 

• Level 3 or Main Memory – It is memory on which computer works currently. 
It is small in size and once power is off data no longer stays in this memory. 

• Level 4 or Secondary Memory – It is external memory which is not as fast as 
main memory but data stays permanently in this memory. 
 

Cache Performance:  
When the processor needs to read or write a location in main memory, it first 
checks for a corresponding entry in the cache. 
• If the processor finds that the memory location is in the cache, a cache hit has 

occurred and data is read from cache 
• If the processor does not find the memory location in the cache, a cache 

miss has occurred. For a cache miss, the cache allocates a new entry and 
copies in data from main memory, then the request is fulfilled from the 
contents of the cache. 
 

The performance of cache memory is frequently measured in terms of a quantity 
called Hit ratio. 
Hit ratio = hit / (hit + miss) =  no. of hits/total accesses 

We can improve Cache performance using higher cache block size, higher 
associativity, reduce miss rate, reduce miss penalty, and reduce Reduce the time to 
hit in the cache. 

Cache Mapping: 
There are three different types of mapping used for the purpose of cache memory 
which are as follows: Direct mapping, Associative mapping, and Set-Associative 
mapping. These are explained below. 



1. Direct Mapping – The simplest technique, known as direct mapping, maps 
each block of main memory into only one possible cache line. or 
In Direct mapping, assigne each memory block to a specific line in the cache. If 
a line is previously taken up by a memory block when a new block needs to be 
loaded, the old block is trashed. An address space is split into two parts index 
field and a tag field. The cache is used to store the tag field whereas the rest is 
stored in the main memory. Direct mapping`s performance is directly 
proportional to the Hit ratio. 

i = j modulo m 
where 
i=cache line number 
j= main memory block number 
m=number of lines in the cache 

For purposes of cache access, each main memory address can be viewed as 
consisting of three fields. The least significant w bits identify a unique word or 
byte within a block of main memory. In most contemporary machines, the 
address is at the byte level. The remaining s bits specify one of the 2s blocks of 
main memory. The cache logic interprets these s bits as a tag of s-r bits (most 
significant portion) and a line field of r bits. This latter field identifies one of the 
m=2r lines of the cache. 
 

 

 

2. Associative Mapping – In this type of mapping, the associative memory is 
used to store content and addresses of the memory word. Any block can go into 
any line of the cache. This means that the word id bits are used to identify 
which word in the block is needed, but the tag becomes all of the remaining 
bits. This enables the placement of any word at any place in the cache memory. 
It is considered to be the fastest and the most flexible mapping form. 
 



 
3. Set-associative Mapping – This form of mapping is an enhanced form of direct 

mapping where the drawbacks of direct mapping are removed. Set associative 
addresses the problem of possible thrashing in the direct mapping method. It 
does this by saying that instead of having exactly one line that a block can map 
to in the cache, we will group a few lines together creating a set. Then a block 
in memory can map to any one of the lines of a specific set..Set-associative 
mapping allows that each word that is present in the cache can have two or 
more words in the main memory for the same index address. Set associative 
cache mapping combines the best of direct and associative cache mapping 
techniques. 
In this case, the cache consists of a number of sets, each of which consists of a 
number of lines. The relationships are 

m = v * k 
i= j mod v 
where 
i=cache set number 
j=main memory block number 
v=number of sets 
m=number of lines in the cache number of sets  
k=number of lines in each set 

 



 
Application of Cache Memory – 
1. Usually, the cache memory can store a reasonable number of blocks at any 

given time, but this number is small compared to the total number of 
blocks in the main memory. 

2. The correspondence between the main memory blocks and those in the 
cache is specified by a mapping function. 

 
Types of Cache – 
• Primary Cache – A primary cache is always located on the processor chip. 

This cache is small and its access time is comparable to that of processor 
registers. 

• Secondary Cache – Secondary cache is placed between the primary cache 
and the rest of the memory. It is referred to as the level 2 (L2) cache. Often, 
the Level 2 cache is also housed on the processor chip. 

 
Locality of reference – Since size of cache memory is less as compared to 
main memory. So to check which part of main memory should be given priority 
and loaded in cache is decided based on locality of reference. 
 
Types of Locality of reference 

Spatial Locality of reference This says that there is a chance that 
element will be present in the close proximity to the reference point and 
next time if again searched then more close proximity to the point of 
reference. 
Temporal Locality of reference In this Least recently used algorithm will 
be used. Whenever there is page fault occurs within a word will not only 
load word in main memory but complete page fault will be loaded because 
spatial locality of reference rule says that if you are referring any word next 
word will be referred in its register that’s why we load complete page table 
so the complete block will be loaded. 
 

  



UNIT-V 

Standard I/O interfaces 

The processor bus is the bus defied by the signals on the processor chip 
itself. Devices that require a very high-speed connection to the processor, such as 
the main memory, may be connected directly to this bus. For electrical reasons, 
only a few devices can be connected in this manner. The motherboard usually 
provides another bus that can support more devices. The two buses are 
interconnected by a circuit, which we will call a bridge, that translates the signals 
and protocols of one bus into those of the other. Devices connected to the 
expansion bus appear to the processor as if they were connected directly to the 
processor’s own bus. The only difference is that the bridge circuit introduces a 
small delay in data transfers between the processor and those devices.  

It is not possible to define a uniform standard for the processor bus. The 
structure of this bus is closely tied to the architecture of the processor. It is also 
dependent on the electrical characteristics of the processor chip, such as its clock 
speed. The expansion bus is not subject to these limitations, and therefore it can 
use a standardized signaling scheme. A number of standards have been developed. 
Some have evolved by default, when a particular design became commercially 
successful. For example, IBM developed a bus they called ISA (Industry Standard 
Architecture) for their personal computer known at the time as PC AT.  

Some standards have been developed through industrial cooperative efforts, 
even among competing companies driven by their common self-interest in having 
compatible products. In some cases, organizations such as the IEEE (Institute of 
Electrical and Electronics Engineers), ANSI (American National Standards 
Institute), or international bodies such as ISO (International Standards 
Organization) have blessed these standards and given them an official status.  

A given computer may use more than one bus standards. A typical Pentium 
computer has both a PCI bus and an ISA bus, thus providing the user with a wide 
range of devices to choose from.  

 



Peripheral Component Interconnect (PCI) Bus:-  

The PCI bus is a good example of a system bus that grew out of the need for 
standardization. It supports the functions found on a processor bus bit in a 
standardized format that is independent of any particular processor. Devices 
connected to the PCI bus appear to the processor as if they were connected directly 
to the processor bus. They are assigned addresses in the memory address space of 
the processor.  

The PCI follows a sequence of bus standards that were used primarily in IBM 
PCs. Early PCs used the 8-bit XT bus, whose signals closely mimicked those of 
Intel’s 80x86 processors. Later, the 16-bit bus used on the PC At computers 
became known as the ISA bus. Its extended 32-bit version is known as the EISA 
bus. Other buses developed in the eighties with similar capabilities are the 
Microchannel used in IBM PCs and the NuBus used in Macintosh computers.  

The PCI was developed as a low-cost bus that is truly processor 
independent. Its design anticipated a rapidly growing demand for bus bandwidth to 
support high-speed disks and graphic and video devices, as well as the specialized 
needs of multiprocessor systems. As a result, the PCI is still popular as an industry 
standard almost a decade after it was first introduced in 1992.  

An important feature that the PCI pioneered is a plug-and-play capability for 
connecting I/O devices. To connect a new device, the user simply connects the 
device interface board to the bus. The software takes care of the rest.  

Data Transfer:-  

In today’s computers, most memory transfers involve a burst of data rather 
than just one word. The reason is that modern processors include a cache memory. 
Data are transferred between the cache and the main memory in burst of several 
words each. The words involved in such a transfer are stored at successive memory 
locations. When the processor (actually the cache controller) specifies an address 
and requests a read operation from the main memory, the memory responds by 
sending a sequence of data words starting at that address. Similarly, during a write 
operation, the processor sends a memory address followed by a sequence of data 
words, to be written in successive memory locations starting at the address. The 
PCI is designed primarily to support this mode of operation. A read or write 
operation involving a single word is simply treated as a burst of length one.  

The bus supports three independent address spaces: memory, I/O, and 
configuration. The first two are self-explanatory. The I/O address space is intended 
for use with processors, such as Pentium, that have a separate I/O address space. 
However, as noted , the system designer may choose to use memory-mapped I/O 
even when a separate I/O address space is available. In fact, this is the approach 
recommended by the PCI its plug-and-play capability. A 4-bit command that 
accompanies the address identifies which of the three spaces is being used in a 
given data transfer operation.  

The signaling convention on the PCI bus is similar to the one used, we 
assumed that the master maintains the address information on the bus until data 



transfer is completed. But, this is not necessary. The address is needed only long 
enough for the slave to be selected. The slave can store the address in its internal 
buffer. Thus, the address is needed on the bus for one clock cycle only, freeing the 
address lines to be used for sending data in subsequent clock cycles. The result is 
a significant cost reduction because the number of wires on a bus is an important 
cost factor. This approach in used in the PCI bus.  

At any given time, one device is the bus master. It has the right to initiate 
data transfers by issuing read and write commands. A master is called an initiator 
in PCI terminology. This is either a processor or a DMA controller. The addressed 
device that responds to read and write commands is called a target.  

Device Configuration:-  

When an I/O device is connected to a computer, several actions are needed 
to configure both the device and the software that communicates with it.  

The PCI simplifies this process by incorporating in each I/O device interface 
a small configuration ROM memory that stores information about that device. The 
configuration ROMs of all devices is accessible in the configuration address space. 
The PCI initialization software reads these ROMs whenever the system is powered 
up or reset. In each case, it determines whether the device is a printer, a keyboard, 
an Ethernet interface, or a disk controller. It can further learn bout various device 
options and characteristics.  

Devices are assigned addresses during the initialization process. This means 
that during the bus configuration operation, devices cannot be accessed based on 
their address, as they have not yet been assigned one. Hence, the configuration 
address space uses a different mechanism. Each device has an input signal called 
Initialization Device Select, IDSEL#.  

The PCI bus has gained great popularity in the PC word. It is also used in 
many other computers, such as SUNs, to benefit from the wide range of I/O devices 
for which a PCI interface is available. In the case of some processors, such as the 
Compaq Alpha, the PCI-processor bridge circuit is built on the processor chip itself, 
further simplifying system design and packaging.  

SCSI Bus:-  

The acronym SCSI stands for Small Computer System Interface. It refers to a 
standard bus defined by the American National Standards Institute (ANSI) under 
the designation X3.131 . In the original specifications of the standard, devices such 
as disks are connected to a computer via a 50-wire cable, which can be up to 25 
meters in length and can transfer data at rates up to 5 megabytes/s.  

The SCSI bus standard has undergone many revisions, and its data transfer 
capability has increased very rapidly, almost doubling every two years. SCSI-2 and 
SCSI-3 have been defined, and each has several options. A SCSI bus may have 
eight data lines, in which case it is called a narrow bus and transfers data one byte 
at a time. Alternatively, a wide SCSI bus has 16 data lines and transfers data 16 
bits at a time. There are also several options for the electrical signaling scheme 
used.  



Devices connected to the SCSI bus are not part of the address space of the 
processor in the same way as devices connected to the processor bus. The SCSI 
bus is connected to the processor bus through a SCSI controller. This controller 
uses DMA to transfer data packets from the main memory to the device, or vice 
versa. A packet may contain a block of data, commands from the processor to the 
device, or status information about the device.  

To illustrate the operation of the SCSI bus, let us consider how it may be 
used with a disk drive. Communication with a disk drive differs substantially from 
communication with the main memory.  

A controller connected to a SCSI bus is one of two types – an initiator or a 
target. An initiator has the ability to select a particular target and to send 
commands specifying the operations to be performed. Clearly, the controller on the 
processor side, such as the SCSI controller, must be able to operate as an initiator. 
The disk controller operates as a target. It carries out the commands it receives 
from the initiator. The initiator establishes a logical connection with the intended 
target. Once this connection has been established, it can be suspended and 
restored as needed to transfer commands and bursts of data. While a particular 
connection is suspended, other device can use the bus to transfer information. This 
ability to overlap data transfer requests is one of the key features of the SCSI bus 
that leads to its high performance.  

Data transfers on the SCSI bus are always controlled by the target 
controller. To send a command to a target, an initiator requests control of the bus 
and, after winning arbitration, selects the controller it wants to communicate with 
and hands control of the bus over to it. Then the controller starts a data transfer 
operation to receive a command from the initiator.  

The processor sends a command to the SCSI controller, which causes the 
following sequence of event to take place:  

1. The SCSI controller, acting as an initiator, contends for control of the bus. 
2. When the initiator wins the arbitration process, it selects the target 

controller and hands over control of the bus to it.  
3. The target starts an output operation (from initiator to target); in response to 

this, the initiator sends a command specifying the required read operation. 
4. The target, realizing that it first needs to perform a disk seek operation, 

sends a message to the initiator indicating that it will temporarily suspend 
the connection between them. Then it releases the bus. 

5. The target controller sends a command to the disk drive to move the read 
head to the first sector involved in the requested read operation. Then, it 
reads the data stored in that sector and stores them in a data buffer. When 
it is ready to begin transferring data to the initiator, the target requests 
control of the bus. After it wins arbitration, it reselects the initiator 
controller, thus restoring the suspended connection. 

6. The target transfers the contents of the data buffer to the initiator and then 
suspends the connection again. Data are transferred either 8 or 16 bits in 
parallel, depending on the width of the bus. 



7. The target controller sends a command to the disk drive to perform another 
seek operation. Then, it transfers the contents of the second disk sector to 
the initiator as before. At the end of this transfer, the logical connection 
between the two controllers is terminated. 

8. As the initiator controller receives the data, it stores them into the main 
memory using the DMA approach. 

9. The SCSI controller sends as interrupt to the processor to inform it that the 
requested operation has been completed. 

This scenario show that the messages exchanged over the SCSI bus are at a higher 
level than those exchanged over the processor bus. In this context, a “higher level” 
means that the messages refer to operations that may require several steps to 
complete, depending on the device. Neither the processor nor the SCSI controller 
need be aware of the details of operation of the particular device involved in a data 
transfer. In the preceding example, the processor need not be involved in the disk 
seek operation. 

Direct Memory Access:  

The data transfer between a fast storage media such as magnetic disk and 
memory unit is limited by the speed of the CPU. Thus we can allow the peripherals 
directly communicate with each other using the memory buses, removing the 
intervention of the CPU. This type of data transfer technique is known as DMA or 
direct memory access. During DMA the CPU is idle and it has no control over the 
memory buses. The DMA controller takes over the buses to manage the transfer 
directly between the I/O devices and the memory unit. 

 
 
Bus Request : It is used by the DMA controller to request the CPU to relinquish the 
control of the buses. 

Bus Grant : It is activated by the CPU to Inform the external DMA controller that 
the buses are in high impedance state and the requesting DMA can take control of 
the buses. Once the DMA has taken the control of the buses it transfers the data. 
This transfer can take place in many ways. 

Types of DMA transfer using DMA controller: 

Burst Transfer : DMA returns the bus after complete data transfer. A register is 
used as a byte count, being decremented for each byte transfer, and upon the byte 
count reaching zero, the DMAC will release the bus. When the DMAC operates in 
burst mode, the CPU is halted for the duration of the data transfer. 
Steps involved are: 



1. Bus grant request time. 
2.  Transfer the entire block of data at transfer rate of device because the device is 

usually slow than the speed at which the data can be transferred to CPU. 
3. Release the control of the bus back to CPU So, total time taken to transfer the 

N bytes = Bus grant request time + (N) * (memory transfer rate) + Bus release 
control time. 

Where, 

X µsec =data transfer time or preparation time (words/block) 

Y µsec =memory cycle time or cycle time or transfer time (words/block) 

% CPU idle (Blocked)=(Y/X+Y)*100 

% CPU Busy=(X/X+Y)*100 

Cyclic Stealing : An alternative method in which DMA controller transfers one 
word at a time after which it must return the control of the buses to the CPU. The 
CPU delays its operation only for one memory cycle to allow the direct memory I/O 
transfer to “steal” one memory cycle. 
Steps Involved are: 

1. Buffer the byte into the buffer 
2. Inform the CPU that the device has 1 byte to transfer (i.e. bus grant request) 
3. Transfer the byte (at system bus speed) 
4. Release the control of the bus back to CPU. 

 
Before moving on transfer next byte of data, device performs step 1 again so that 
bus isn’t tied up and the transfer won’t depend upon the transfer rate of device. 
So, for 1 byte of transfer of data, time taken by using cycle stealing mode (T). 
= time required for bus grant + 1 bus cycle to transfer data + time required to 
release the bus, it will be N x T 

In cycle stealing mode we always follow pipelining concept that when one byte is 
getting transferred then Device is parallel preparing the next byte. “The fraction of 
CPU time to the data transfer time” if asked then cycle stealing mode is used. 

Where, 

X µsec =data transfer time or preparation time 

(words/block) 

Y µsec =memory cycle time or cycle time or transfer 

time (words/block) 

% CPU idle (Blocked) =(Y/X)*100 

% CPU busy=(X/Y)*100  

Interleaved mode: In this technique , the DMA controller takes over the system 
bus when the microprocessor is not using it.An alternate half cycle i.e. half cycle 
DMA + half cycle processor. 

Computer Organization and Architecture | Pipelining | Set 1 
(Execution, Stages and Throughput) 

1. To improve the performance of a CPU we have two options: 
Improve the hardware by introducing faster circuits. 

2. Arrange the hardware such that more than one operation can be performed 
at the same time. 

Since, there is a limit on the speed of hardware and the cost of faster circuits 
is quite high, we have to adopt the 2nd option. 



Pipelining : Pipelining is a process of arrangement of hardware elements of the 
CPU such that its overall performance is increased. Simultaneous execution of 
more than one instruction takes place in a pipelined processor. 

Let us see a real life example that works on the concept of pipelined 
operation. Consider a water bottle packaging plant. Let there be 3 stages that a 
bottle should pass through, Inserting the bottle(I), Filling water in the bottle(F), and 
Sealing the bottle(S). Let us consider these stages as stage 1, stage 2 and stage 3 
respectively. Let each stage take 1 minute to complete its operation. 
Now, in a non pipelined operation, a bottle is first inserted in the plant, after 1 
minute it is moved to stage 2 where water is filled. Now, in stage 1 nothing is 
happening. Similarly, when the bottle moves to stage 3, both stage 1 and stage 2 
are idle. But in pipelined operation, when the bottle is in stage 2, another bottle 
can be loaded at stage 1. Similarly, when the bottle is in stage 3, there can be one 
bottle each in stage 1 and stage 2. So, after each minute, we get a new bottle at the 
end of stage 3. Hence, the average time taken to manufacture 1 bottle is : 

Without pipelining = 9/3 minutes = 3m 
I F S | | | | | | 
| | | I F S | | | 
| | | | | | I F S (9 minutes) 
With pipelining = 5/3 minutes = 1.67m 
I F S | | 
| I F S | 
| | I F S (5 minutes) 
Thus, pipelined operation increases the efficiency of a system. 

Design of a basic pipeline 
• In a pipelined processor, a pipeline has two ends, the input end and the output 

end. Between these ends, there are multiple stages/segments such that output 
of one stage is connected to input of next stage and each stage performs a 
specific operation. 

• Interface registers are used to hold the intermediate output between two 
stages. These interface registers are also called latch or buffer. 

• All the stages in the pipeline along with the interface registers are controlled by 
a common clock. 

Execution in a pipelined processor 
Execution sequence of instructions in a pipelined processor can be visualized using 
a space-time diagram. For example, consider a processor having 4 stages and let 
there be 2 instructions to be executed. We can visualize the execution sequence 
through the following space-time diagrams: 
 
Non overlapped execution: 

STAGE / CYCLE 1 2 3 4 5 6 7 8 

S1 I1    I2    
S2  I1    I2   
S3   I1    I2  
S4    I1    I2 

Total time = 8 Cycle 

 



Overlapped execution: 

STAGE / CYCLE 1 2 3 4 5 

S1 I1 I2    
S2  I1 I2   
S3   I1 I2  
S4    I1 I2 

Total time = 5 Cycle 

Pipeline Stages 
RISC processor has 5 stage instruction pipeline to execute all the instructions in 
the RISC instruction set. Following are the 5 stages of RISC pipeline with their 
respective operations: 

• Stage 1 (Instruction Fetch) In this stage the CPU reads instructions from the 
address in the memory whose value is present in the program counter. 

• Stage 2 (Instruction Decode) In this stage, instruction is decoded and the 
register file is accessed to get the values from the registers used in the 
instruction. 

• Stage 3 (Instruction Execute) In this stage, ALU operations are performed. 
• Stage 4 (Memory Access) In this stage, memory operands are read and 

written from/to the memory that is present in the instruction. 
• Stage 5 (Write Back) In this stage, computed/fetched value is written back to 

the register present in the instructions. 
 

Performance of a pipelined processor Consider a ‘k’ segment pipeline with clock 
cycle time as ‘Tp’. Let there be ‘n’ tasks to be completed in the pipelined processor. 
Now, the first instruction is going to take ‘k’ cycles to come out of the pipeline but 
the other ‘n – 1’ instructions will take only ‘1’ cycle each, i.e, a total of ‘n – 1’ cycles. 
So, time taken to execute ‘n’ instructions in a pipelined processor: 
 
                     ETpipeline = k + n – 1 cycles 
                              = (k + n – 1) Tp 
In the same case, for a non-pipelined processor, execution time of ‘n’ instructions 
will be: 

                    ETnon-pipeline = n * k * Tp 
 

So, speedup (S) of the pipelined processor over non-pipelined processor, when ‘n’ 
tasks are executed on the same processor is: 

    S = Performance of pipelined processor / 

        Performance of Non-pipelined processor 

As the performance of a processor is inversely proportional to the execution time, 
we have, 

   S = ETnon-pipeline / ETpipeline 
    => S =  [n * k * Tp] / [(k + n – 1) * Tp] 
       S = [n * k] / [k + n – 1] 
 

When the number of tasks ‘n’ are significantly larger than k, that is, n >> k 

    S = n * k / n 



    S = k 

where ‘k’ are the number of stages in the pipeline. 

Also, Efficiency = Given speed up / Max speed up = S / Smax 
We know that, Smax = k 
So, Efficiency = S / k 
 
Throughput = Number of instructions / Total time to complete the instructions 
So, Throughput = n / (k + n – 1) * Tp 
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(Dependencies and Data Hazard) 

Dependencies in a pipelined processor 
There are mainly three types of dependencies possible in a pipelined processor. 
These are : 

1. Structural Dependency 
2. Control Dependency 
3. Data Dependency 

These dependencies may introduce stalls in the pipeline. 

Stall : A stall is a cycle in the pipeline without new input. 

Structural dependency 

This dependency arises due to the resource conflict in the pipeline. A resource 
conflict is a situation when more than one instruction tries to access the same 
resource in the same cycle. A resource can be a register, memory, or ALU. 

Example: 

INSTRUCTION / CYCLE 1 2 3 4 5 

I1 IF(Mem) ID EX Mem  
I2  IF(Mem) ID EX  
I3   IF(Mem) ID EX 

I4    IF(Mem) ID 
 
In the above scenario, in cycle 4, instructions I1 and I4 are trying to access same 
resource (Memory) which introduces a resource conflict. 
To avoid this problem, we have to keep the instruction on wait until the required 
resource (memory in our case) becomes available. This wait will introduce stalls in 
the pipeline as shown below: 
 

CYCLE 1 2 3 4 5 6 7 8 

I1 IF(Mem) ID EX Mem WB    
I2  IF(Mem) ID EX Mem WB   
I3   IF(Mem) ID EX Mem WB  
I4    – – – IF(Mem)  



  
Solution for structural dependency 
To minimize structural dependency stalls in the pipeline, we use a hardware 
mechanism called Renaming. 
Renaming : According to renaming, we divide the memory into two independent 
modules used to store the instruction and data separately called Code memory(CM) 
and Data memory(DM) respectively. CM will contain all the instructions and DM 
will contain all the operands that are required for the instructions. 
 
INSTRUCTION/ 

CYCLE 1 2 3 4 5 6 7 

I1 IF(CM) ID EX DM WB   
I2  IF(CM) ID EX DM WB  
I3   IF(CM) ID EX DM WB 

I4    IF(CM) ID EX DM 

I5     IF(CM) ID EX 

I6      IF(CM) ID 

I7       IF(CM) 
  
  
Control Dependency (Branch Hazards) 
 

This type of dependency occurs during the transfer of control instructions 
such as BRANCH, CALL, JMP, etc. On many instruction architectures, the 
processor will not know the target address of these instructions when it needs to 
insert the new instruction into the pipeline. Due to this, unwanted instructions are 
fed to the pipeline. 

 
Consider the following sequence of instructions in the program: 
100: I1 
101: I2 (JMP 250) 
102: I3 250: BI1 
Expected output: I1 -> I2 -> BI1 
NOTE: Generally, the target address of the JMP instruction is known after ID stage 
only. 

 

INSTRUCTION/ CYCLE 1 2 3 4 5 6 

I1 IF ID EX MEM WB  
I2  IF ID (PC:250) EX Mem WB 

I3   IF ID EX Mem 

BI1    IF ID EX 
Output Sequence: I1 -> I2 -> I3 -> BI1 
 



So, the output sequence is not equal to the expected output, that means the 
pipeline is not implemented correctly. 

To correct the above problem we need to stop the Instruction fetch until we get 
target address of branch instruction. This can be implemented by introducing delay 
slot until we get the target address. 

INSTRUCTION/ CYCLE 1 2 3 4 5 6 

I1 IF ID EX MEM WB  
I2  IF ID (PC:250) EX Mem WB 

Delay – – – – – – 

BI1    IF ID EX 
 
Output Sequence: I1 -> I2 -> Delay (Stall) -> BI1 
As the delay slot performs no operation, this output sequence is equal to the 
expected output sequence. But this slot introduces stall in the pipeline. 

Solution for Control dependency Branch Prediction is the method through which 
stalls due to control dependency can be eliminated. In this at 1st stage prediction is 
done about which branch will be taken.For branch prediction Branch penalty is 
zero. 
 
Branch penalty : The number of stalls introduced during the branch operations in 
the pipelined processor is known as branch penalty. 
NOTE : As we see that the target address is available after the ID stage, so the 
number of stalls introduced in the pipeline is 1. Suppose, the branch target 
address would have been present after the ALU stage, there would have been 2 
stalls. Generally, if the target address is present after the kth stage, then there will 
be (k – 1) stalls in the pipeline. 
Total number of stalls introduced in the pipeline due to branch instructions 
= Branch frequency * Branch Penalty 
 
Data Dependency (Data Hazard) 
Let us consider an ADD instruction S, such that 
S : ADD R1, R2, R3 
Addresses read by S = I(S) = {R2, R3} 
Addresses written by S = O(S) = {R1} 
 
Now, we say that instruction S2 depends in instruction S1, when 

This condition is called Bernstein condition. 
Three cases exist: 

• Flow (data) dependence: O(S1) ∩ I (S2), S1 → S2 and S1 writes after something 
read by S2 

• Anti-dependence: I(S1) ∩ O(S2), S1 → S2 and S1 reads something before S2 
overwrites it 

• Output dependence: O(S1) ∩ O(S2), S1 → S2 and both write the same memory 
location. 

https://media.geeksforgeeks.org/wp-content/uploads/formula-41.jpg


Example: Let there be two instructions I1 and I2 such that: 
I1 : ADD R1, R2, R3 

I2 : SUB R4, R1, R2 

When the above instructions are executed in a pipelined processor, then data 
dependency condition will occur, which means that I2 tries to read the data before 
I1 writes it, therefore, I2 incorrectly gets the old value from I1. 
 

INSTRUCTION / CYCLE 1 2 3 4 

I1 IF ID EX DM 

I2  IF ID(Old value) EX 
 
To minimize data dependency stalls in the pipeline, operand forwarding is used. 
Operand Forwarding : In operand forwarding, we use the interface registers 
present between the stages to hold intermediate output so that dependent 
instruction can access new value from the interface register directly. 
Considering the same example: 

I1 : ADD R1, R2, R3 

I2 : SUB R4, R1, R2 

INSTRUCTION / CYCLE 1 2 3 4 

I1 IF ID EX DM 

I2  IF ID EX 
  
 Data Hazards 
Data hazards occur when instructions that exhibit data dependence, modify data in 
different stages of a pipeline. Hazard cause delays in the pipeline. There are mainly 
three types of data hazards: 

5. RAW (Read after Write) [Flow/True data dependency] 
6. WAR (Write after Read) [Anti-Data dependency] 
7. WAW (Write after Write) [Output data dependency] 

Let there be two instructions I and J, such that J follow I. Then, 

• RAW hazard occurs when instruction J tries to read data before instruction I 
writes it. 
Eg: 
I: R2 <- R1 + R3 
J: R4 <- R2 + R3 

• WAR hazard occurs when instruction J tries to write data before instruction I 
reads it. 
Eg: 
I: R2 <- R1 + R3 
J: R3 <- R4 + R5 

• WAW hazard occurs when instruction J tries to write output before instruction 
I writes it. 

• Eg: 
I: R2 <- R1 + R3 
J: R2 <- R4 + R5 

WAR and WAW hazards occur during the out-of-order execution of the instructions. 
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Types of pipeline 
• Uniform delay pipeline 

In this type of pipeline, all the stages will take same time to complete an 
operation. 
In uniform delay pipeline, Cycle Time (Tp) = Stage Delay 
If buffers are included between the stages then, Cycle Time (Tp) = Stage 
Delay + Buffer Delay 
 

• Non-Uniform delay pipeline 
In this type of pipeline, different stages take different time to complete an 
operation. 
In this type of pipeline, Cycle Time (Tp) = Maximum(Stage Delay) 

For example, if there are 4 stages with delays, 1 ns, 2 ns, 3 ns, and 4 ns, then 

Tp = Maximum(1 ns, 2 ns, 3 ns, 4 ns) = 4 ns 

If buffers are included between the stages, 

Tp = Maximum(Stage delay + Buffer delay) 

I/O Interface (Interrupt and DMA Mode) 

The method that is used to transfer information between internal storage and 
external I/O devices is known as I/O interface. The CPU is interfaced using special 
communication links by the peripherals connected to any computer system. These 
communication links are used to resolve the differences between CPU and 
peripheral. There exists special hardware components between CPU and 
peripherals to supervise and synchronize all the input and output transfers that 
are called interface units. 

Mode of Transfer: 

The binary information that is received from an external device is usually stored in 
the memory unit. The information that is transferred from the CPU to the external 
device is originated from the memory unit. CPU merely processes the information 
but the source and target is always the memory unit. Data transfer between CPU 
and the I/O devices may be done in different modes. 

Data transfer to and from the peripherals may be done in any of the three possible 
ways 

1. Programmed I/O. 
2. Interrupt- initiated I/O. 
3. Direct memory access( DMA). 

Now let’s discuss each mode one by one. 

1. Programmed I/O: It is due to the result of the I/O instructions that are 
written in the computer program. Each data item transfer is initiated by an 
instruction in the program. Usually the transfer is from a CPU register and 
memory. In this case it requires constant monitoring by the CPU of the 
peripheral devices. 
Example of Programmed I/O: In this case, the I/O device does not have direct 
access to the memory unit. A transfer from I/O device to memory requires the 
execution of several instructions by the CPU, including an input instruction to 
transfer the data from device to the CPU and store instruction to transfer the 
data from CPU to memory. In programmed I/O, the CPU stays in the program 
loop until the I/O unit indicates that it is ready for data transfer. This is a time 



consuming process since it needlessly keeps the CPU busy. This situation can 
be avoided by using an interrupt facility. This is discussed below. 

2. Interrupt- initiated I/O: Since in the above case we saw the CPU is kept busy 
unnecessarily. This situation can very well be avoided by using an interrupt 
driven method for data transfer. By using interrupt facility and special 
commands to inform the interface to issue an interrupt request signal 
whenever data is available from any device. In the meantime the CPU can 
proceed for any other program execution. The interface meanwhile keeps 
monitoring the device. Whenever it is determined that the device is ready for 
data transfer it initiates an interrupt request signal to the computer. Upon 
detection of an external interrupt signal the CPU stops momentarily the task 
that it was already performing, branches to the service program to process the 
I/O transfer, and then return to the task it was originally performing. 

Note: Both the methods programmed I/O and Interrupt-driven I/O require the 
active intervention of the processor to transfer data between memory and the 
I/O module, and any data transfer must transverse a path through the 
processor. Thus both these forms of I/O suffer from two inherent drawbacks. 

 
• The I/O transfer rate is limited by the speed with which the processor can test 

and service a device. 
• The processor is tied up in managing an I/O transfer; a number of instructions 

must be executed for each I/O transfer. 
 

3. Direct Memory Access: The data transfer between a fast storage media such 
as magnetic disk and memory unit is limited by the speed of the CPU. Thus we 
can allow the peripherals directly communicate with each other using the 
memory buses, removing the intervention of the CPU. This type of data transfer 
technique is known as DMA or direct memory access. During DMA the CPU is 
idle and it has no control over the memory buses. The DMA controller takes 
over the buses to manage the transfer directly between the I/O devices and the 
memory unit. 

 

Bus Request : It is used by the DMA controller to request the CPU to relinquish the 
control of the buses. 
Bus Grant : It is activated by the CPU to Inform the external DMA controller that 
the buses are in high impedance state and the requesting DMA can take control of 
the buses. Once the DMA has taken the control of the buses it transfers the data. 
This transfer can take place in many ways. 

 

 



Introduction to Parallel Computing 
Before taking a toll on Parallel Computing, first let’s take a look at the background 
of computations of computer software and why it failed for the modern era. 

Computer software were written conventionally for serial computing. This meant 
that to solve a problem, an algorithm divides the problem into smaller instructions. 
These discrete instructions are then executed on Central Processing Unit of a 
computer one by one. Only after one instruction is finished, next one starts. 

Real life example of this would be people standing in a queue waiting for movie 
ticket and there is only cashier.Cashier is giving ticket one by one to the persons. 
Complexity of this situation increases when there are 2 queues and only one 
cashier. 

So, in short Serial Computing is following: 

1. In this, a problem statement is broken into discrete instructions. 
2. Then the instructions are executed one by one. 
3. Only one instruction is executed at any moment of time. 

Look at point 3. This was causing a huge problem in computing industry as only 
one instruction was getting executed at any moment of time. This was a huge waste 
of hardware resources as only one part of the hardware will be running for a 
particular instruction and of time. As problem statements were getting heavier and 
bulkier, so does the amount of time in execution of those statements. Example of 
processors are Pentium 3 and Pentium 4. 

Now let’s come back to our real life problem. We could definitely say that 
complexity will decrease when there are 2 queues and 2 cashier giving tickets to 2 
persons simultaneously. This is an example of Parallel Computing. 

Parallel Computing – It is the use of multiple processing elements simultaneously 
for solving any problem. Problems are broken down into instructions and are solved 
concurrently as each resource which has been applied to work is working at the 
same time. 
Advantages of Parallel Computing over Serial Computing are as follows: 
1. It saves time and money as many resources working together will reduce the 

time and cut potential costs. 
2. It can be impractical to solve larger problems on Serial Computing. 
3. It can take advantage of non-local resources when the local resources are 

finite. 
4. Serial Computing ‘wastes’ the potential computing power, thus Parallel 

Computing makes better work of hardware. 
 

Types of Parallelism: 
1. Bit-level parallelism: It is the form of parallel computing which is based on 

the increasing processor’s size. It reduces the number of instructions that the 
system must execute in order to perform a task on large-sized data. 
Example: Consider a scenario where an 8-bit processor must compute the sum 
of two 16-bit integers. It must first sum up the 8 lower-order bits, then add the 
8 higher-order bits, thus requiring two instructions to perform the operation. A 
16-bit processor can perform the operation with just one instruction. 

2. Instruction-level parallelism: A processor can only address less than one 
instruction for each clock cycle phase. These instructions can be re-ordered 
and grouped which are later on executed concurrently without affecting the 
result of the program. This is called instruction-level parallelism. 

3. Task Parallelism: Task parallelism employs the decomposition of a task into 
subtasks and then allocating each of the subtasks for execution. The 
processors perform execution of sub tasks concurrently. 



Why parallel computing? 
• The whole real world runs in dynamic nature i.e. many things happen at a 

certain time but at different places concurrently. This data is extensively huge 
to manage. 

• Real world data needs more dynamic simulation and modeling, and for 
achieving the same, parallel computing is the key. 

• Parallel computing provides concurrency and saves time and money. 
• Complex, large datasets, and their management can be organized only and only 

using parallel computing’s approach. 
• Ensures the effective utilization of the resources. The hardware is guaranteed 

to be used effectively whereas in serial computation only some part of hardware 
was used and the rest rendered idle. 

• Also, it is impractical to implement real-time systems using serial computing. 
 

Applications of Parallel Computing: 
• Data bases and Data mining. 
• Real time simulation of systems. 
• Science and Engineering. 
• Advanced graphics, augmented reality and virtual reality. 

 
Limitations of Parallel Computing: 
• It addresses such as communication and synchronization between multiple 

sub-tasks and processes which is difficult to achieve. 
• The algorithms must be managed in such a way that they can be handled in 

the parallel mechanism. 
• The algorithms or program must have low coupling and high cohesion. But it’s 

difficult to create such programs. 
• More technically skilled and expert programmers can code a parallelism based 

program well. 
Future of Parallel Computing: The computational graph has undergone a great 
transition from serial computing to parallel computing. Tech giant such as Intel 
has already taken a step towards parallel computing by employing multicore 
processors. Parallel computation will revolutionize the way computers work in the 
future, for the better good. With all the world connecting to each other even more 
than before, Parallel Computing does a better role in helping us stay that way. With 
faster networks, distributed systems, and multi-processor computers, it becomes 
even more necessary. 

Parallel processing – systolic arrays 

Parallel processing approach diverges from traditional Von Neumann architecture. 
One such approach is the concept of Systolic processing using systolic arrays. 
A systolic array is a network of processors that rhythmically compute and pass 
data through the system. They derived their name from drawing an analogy to how 
blood rhythmically flows through a biological heart as the data flows from memory 
in a rhythmic fashion passing through many elements before it returns to 
memory.It is also an example of pipelining along with parallel computing.It was 
introduced in 1970s and was used by Intel to make CMU’s iWarp processor in 
1990. 
In a systolic array there are a large number of identical simple processors or 
processing elements (PEs) that are arranged in a well organised structure such as 
linear or two dimensional array. Each processing element is connected with the 
other PEs and has a limited private storage. 
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A Host station is often used for communication with the outside world in the 
network. 

Characteristics: 
1. Parallel Computing – Many processes are carried out simultaneously. As the 

arrays have a non-centralized structure, parallel computing is implemented. 
2. Pipelinability – It means that the array can achieve high speed. It shows a 

linear rate pipelinability. 
3. Synchronous evaluation – Computation of data is timed by a global clock and 

then the data is passed through the network.The global clock synchronizes the 
array and has fixed length clock cycles. 

4. Repetability – Most of the arrays have the repetition and interconnection of a 
single type of PE in the entire network. 

5. Spatial Locality – The cells have a local communication interconnection. 
6. Temporal Locality – One unit time delay is at least required for the 

transmission of signals from one cell to another. 
7. Modularity and regularity – A systolic array consists of processing units that 

are modular and have homogeneous interconnection and the computer 
network can be extended indefinitely. 
 

Advantages of Systolic array – 
• It employs high degree of parallelism and can sustain a very high throughput. 
• These are highly compact, robust and efficient. 
• Data and control flow are simple and regular. 

Disadvantages of Systolic array – 
• They are highly specialized and thus are inflexible regarding the problems they 

can solve. 
• These are difficult to build. 
• These are expensive. 

List And Briefly Explain Various Ways In Which An Instruction Pipeline 
Can Deal With Conditional Branch Instructions. 

Multiple streams: A brute-force approach is to replicate the initial portions of 
the pipeline and allow the pipeline to fetch both instructions, making use of two 
streams.  

Prefetch branch target:  

When a conditional branch is recognized, the target of the branch is 
prefetched, in addition to the instruction following the branch. This target is then 
saved until the branch instruction is executed. If the branch is taken, the target 
has already been prefetched.  

 

 



Loop buffer:  

A loop buffer is a small, very-high-speed memory maintained by the 
instruction fetch stage of the pipeline and containing the nmost recently fetched 
instructions, in sequence. If a branch is to be taken, the hardware first checks 
whether the branch target is within the buffer. If so, the next instruction is fetched 
from the buffer.  

Branch prediction:  

A prediction is made whether a conditional branch will be taken when 
executed, and subsequent instructions are fetched accordingly.  

Delayed branch:  

It is possible to improve pipeline performance by automatically rearranging 
instructions within a program, so that branch instructions occur later than 
actually desired. 

List two sources of interrups and exceptions. 

1. Interrupts 

• Maskable interrupts: Received on the processor’s INTR pin. The processor does 
not recognize a maskable interrupt unless the interrupt enable flag (IF) is set. 

• Nonmaskable interrupts: Received on the processor’s NMI pin. Recognition of 
such interrupts cannot be prevented. 

2. Exceptions 

• Processor-detected exceptions: Results when the processor encounters an error 
while attempting to execute an instruction. 

• Programmed exceptions: These are instructions that generate an exception (e.g., 
INTO, INT3, INT, and BOUND). 

Difference between instructions and instruction sequencing 

Four types of operations 

1. Data transfer between memory and processor registers. 
2. Arithmetic & logic operations on data 
3. Program sequencing & control 
4. I/O transfers. 

1. Register transfer notations (RTN) 

R3<–[R1]+[R2] 

• Right hand side of RTN-denotes a value. 
• Left hand side of RTN-name of a location. 

 
2. Assembly language notations(ALN) 

Add R1, R2, R3 

• Adding ontents of R1, R2 & place sum in R3. 

3. Basic instruction types-4 types 

Three address instructions– Add A,B,C 

A, B-source operands 

C-destination operands 

• Two address instructions-Add A,B 

B <–[A] + [B] 



• One address instructions –Add A 

Add contents of A to accumulator & store sum back to accumulator. 

• Zero address instructions 

Instruction store operands in a structure called push down stack. 

4. Instruction execution & straight line sequencing 

• The processor control circuits use information in PC to fetch & execute 
instructions one at a time in order of increasing address. 

• This is called straight line sequencing. 
• Executing an instruction-2 phase procedures. 
• 1st phase–“instruction fetch”-instruction is fetched from memory location 

whose address is in PC. 
• This instruction is placed in instruction register in processor 
• 2nd phase-“instruction execute”-instruction in IR is examined to determine 

which operation to be performed. 

5. Branching 

• Branch-type of instruction loads a new value into program counter. 
• So processor fetches & executes instruction at this new address called 

“branch target” 
• Conditional branch-causes a branch if a specified condition is satisfied. 
• E.g. Branch>0 LOOP –conditional branch instruction .it executes only if it 

satisfies condition. 

6. Condition codes 

• Recording required information in individual bits called “condition code 
flags”. 

• These flags are grouped together in a special processor register called 
“condition code register” or “status register” 

• Individual condition code flags-1 or 0. 
• 4 commonly used flags. 

 
1. N (negative)-set to 1 if result is –ve or else 0. 
2. Z (zero)-set to 1 if result is 0, or else 0 . 
3. V (overflow)-set to 1if arithmetic overflow occurs or else 0. 
4. C(carry)-set to 1 if carry out results from operation or else 0 

Draw and explain typical Hardwired v/s Micro-programmed Control Unit. 
To execute an instruction, the control unit of the CPU must generate the 

required control signal in the proper sequence. There are two approaches used for 
generating the control signals in proper sequence as Hardwired Control unit and 
Micro-programmed control unit. 

Hardwired Control Unit – The control hardware can be viewed as a state machine 
that changes from one state to another in every clock cycle, depending on the 
contents of the instruction register, the condition codes and the external inputs. 
The outputs of the state machine are the control signals. The sequence of the 
operation carried out by this machine is determined by the wiring of the logic 
elements and hence named as “hardwired”. 

• Fixed logic circuits that correspond directly to the Boolean expressions are 
used to generate the control signals. 



• Hardwired control is faster than micro-programmed control. 
• A controller that uses this approach can operate at high speed. 
• RISC architecture is based on hardwired control unit 

 

Micro-programmed Control Unit – 

• The control signals associated with operations are stored in special memory 
units inaccessible by the programmer as Control Words. 

• Control signals are generated by a program are similar to machine language 
programs. 

• Micro-programmed control unit is slower in speed because of the time it 
takes to fetch microinstructions from the control memory. 

Some Important Terms – 

1. Control Word : A control word is a word whose individual bits represent 
various control signals. 

2. Micro-routine : A sequence of control words corresponding to the control 
sequence of a machine instruction constitutes the micro-routine for that 
instruction. 

3. Micro-instruction : Individual control words in this micro-routine are 
referred to as microinstructions. 

4. Micro-program : A sequence of micro-instructions is called a micro-
program, which is stored in a ROM or RAM called a Control Memory (CM). 

5. Control Store : the micro-routines for all instructions in the instruction set 
of a computer are stored in a special memory called the Control Store. 



 

Types of Micro-programmed Control Unit – Based on the type of Control Word 
stored in the Control Memory (CM), it is classified into two types : 

1. Horizontal Micro-programmed control Unit : The control signals are 
represented in the decoded binary format that is 1 bit/CS. Example: If 53 Control 
signals are present in the processor than 53 bits are required. More than 1 control 
signal can be enabled at a time. 

• It supports longer control word. 
• It is used in parallel processing applications. 
• It allows higher degree of parallelism. If degree is n, n CS are enabled at a 

time. 
• It requires no additional hardware(decoders). It means it is faster than 

Vertical Microprogrammed. 
• It is more flexible than vertical microprogrammed. 

2. Vertical Micro-programmed control Unit : The control signals re represented 
in the encoded binary format. For N control signals- Log2(N) bits are required. 

• It supports shorter control words. 

• It supports easy implementation of new conrol signals therefore it is more 
flexible. 

• It allows low degree of parallelism i.e., degree of parallelism is either 0 or 1. 



• Requires an additional hardware (decoders) to generate control signals, it 
implies it is slower than horizontal microprogrammed. 

• It is less flexible than horizontal but more flexible than that of hardwired 
control unit 
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